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Recap

e \Why pruning?
o Running cost of CNNs and Transformers
Sparse matrix encoding
General pruning techniques
Transformer pruning
Large model pruning
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Fixed-Point Arithmetic (INT)

Fixed Point Formats
320 76 0
4-bit Fixed 8-bit Fixed

Point (INT4) Point (INT8)
e=0, m=3 e=0, m=7

e Hyperparameter associated with the fixed-point format:
o Clipping range (-L, L): usually symmetrical around 0
o Bitwidth (b)
e Quantization with Fixed-point format is called Fixed point quantization or
INT quantization.
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Fixed-Point Format (Symmetrical)

e How to convert a number x to INT representation?

Set the clipping range: (-L, L), bitwidth: b

Compute the scale: s = 2L /(2" — 2)

Clip the input x: z. = Clip(x, L, —L)

Calculate the INT representation: x;,,; = round(z./s)
Rescale: Ty = STint

O O O O O

e Have a uniform representation power within the clipping range.
e All the computations can be performed using Z;,;

-L 0 L -L 0 L
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Example

e X=[1.1,24,-0.3,0.8], bitwidth=3,L=2

e How to convert a number x to INT representation?

Set the clipping range: (-L, L), bitwidth: b b=3, L=2

Compute the scale: s = 2L /(2" —2) s=4/6=2/3

Clip the input x: z. = Clip(z,L,—L) Xc=1[1.1,2,-0.3,0.8]

Calculate the INT representation: x;,; = round(z./s) Xint =[2, 3, 0, 1]
Rescale: Ty = STipt Xq=[1.33, 2.0, 0.0, 0.67]

O O O O O
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Computation with Fixed-Point Format

e Addition/Subtraction: , + ¥y, = $(Tint £ Yint)
e Multiplication: T4 X Y4 = sz(mmt X yz’nt)

o Division: z/yq = Tint/Yint If the scales are the same

[H Half Adder Yo gYE 0 Ve 0 N J0 %
] Full Adder A A A
0 AND Gate
Yol X y2 X yi X Yo X + Sum
L b d. M d ] - Carry
Cn Ch-1 C C2 C Co
<« F e « F dder Full Adde F di -~

r??@@@%?@\




Computation with Fixed-Point Format

e If we try to compute the matrix multiplication between X and Y-

Xq,1 Xq,2

Ya.1

Ya.2

All elements within the tensors are quantized using the
same scale

Lg1 X Yg1 1 Lg2 X Yg2 = Smsy(wint,l X Yint,1 g Tint,2 X yint,2)
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INT Quantization with Low Precision

1 1' Binary neural network Ternary neural network

A—
oL
—_—

e Binary and Ternary neural networks are both multiplication-free DNN.
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Fixed Point Format (Unsymmetrical)

e How to convert a number to INT8 representation?

O O O O
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Set the clipping range: (-L, L), bitwidth: b
Compute the scale: s = (Lmee — Limin)/(2° — 1)
Clip the input x: z. = Clip(z, L1in, Limaz)
Calculate the fixed-point representation:

Tint = round((z. — Lmin)/$)

Rescale: z, = szint + Limin



Example

=[1.1, 2.4, -0.3, 0.8], bitwidth=3,L=2

e How to convert a number to INT8 representation?

O O O O
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Set the clipping range: (-L, L), bitwidth: b b=3, Lmax=2, Lmin=-0.5
Compute the scale: s = (Liaz — mm)/(zb —1) s=0.357
Clip the input x: . = Clip(x, Lyin, Limaz) Xc =[1.1, 2, -0.3, 0.8]
Calculate the fixed-point representation:

Tint = round((x. — Lmin)/s) Xint=1[4,7,1,4]

Rescale: ¢4 = sZijnt + Limin ~ Xq =[0.93, 2.0, -0.14, 0.93]
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Computation with Fixed-Point Format

e Addition/Subtraction: hard to implement
e Multiplication (needs additional computation):

g X Yq :Swsy(mz’nt X yint) £ Lmin,myqsy + Lmz’n,qusaz =5 Lmin,mLmin,y

e Division: hard to implement

NYU SAI LAB
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Floating-Point Arithmetic

IEEE 754 3439 22 e
32-bit (FP32)
e=8, m=23
ESign field [JExponent (e)

1514 9

IEEE 754

16-bit (FP16)
e=5, m=10

[ 1Mantissa (m)

e The floating-point number has three fields:

o  Sign (s)
o Exponent (e)
o Mantissa (m)

NYU SAI LAB
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Floating-Point Arithmetic

sign exponent (8 bits) fraction (23 bits)
| Il |

olof1]1]1]1|1|o[ofo]1]ololofolo]o]o]ololofofo]o]o]ololofolo]o]o] = 0.15625
31 30 2322 (bit index) 0

e Every real number can be converted in the following format:

= (—1)° x 2°7% x m  where 1 < m < 2 There typically exists a predefined
bias: bias = 127 for IEEE 754 FP32.
L= (11)0()1()2[)22)2

e Forexample:
o 5.5=(-1)2x2"%127 % (1.011). s=0,e=129, m =011
o -71=(-1)"x 233127 % (1.000111):
o 0.34375 = (-1)" x 2125127 % (1.011);

NYU SAI LAB Overton, Michael L. "Floating point representation.” Unpublished note (1996). 15




Floating-Point Arithmetic

sign exponent (8 bits) fraction (23 bits)
| Il |

olof1]1]1]1|1|o[ofo]1]ololofolo]o]o]ololofofo]o]o]ololofolo]o]o] = 0.15625
31 30 2322 (bit index) 0

e |EEE-754 standard:

T —

m =

(—1)8 > 2e—bz’as v m aphere: T S D
(1'b0b1b2...b22)2

e The exponent field is unsigned.
e We need some special representation:

O

A bit stream of all zeros represents O

NYU SAI LAB
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Floating Point Arithmetic

IIII
...... 0 1

I
I
2 3

A

e Have better representation power for values with small magnitudes.
e How to convert a real number x to FP representation?

X =|[x| s =sign(x)
. T
a = |logax| e = a -+ bias mZF—l
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Example

= -13.24, bias=127
X =|x| s =sign(x)
_ T
a = [logaz| e = a+ bias ng—l
a=3,e=130,m=0.655
s =(0)2, e =(10000010)2, m = (0.101001111010111000010000)2

NYU SAI LAB
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Computation with FP Representation

e Addition/Subtraction:
o Need to align the exponent

011010 + 001111 = 011010 + 011001 = 011011
e A

S1e1mi S2€2 M2 Alignment
e Multiplication/Subtraction:
o Sum the exponent, multiply the mantissa

011010 ¥ 001111 e =er+ez

e - _
S1e1 M1 S2€2 Mo m=1.m1x 1.m2

e Addition and subtraction is expensive for FP.

NYU SAI LAB
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Customized FP Representation

15 14 6 0
bfloat16
e=8, m=7
15 14 9 0

IEEE 754

16-bit (FP16)
e=5 m=10

e Numerous customized FP representations have been developed to

facilitate DNN execution.
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TensorFloat

HFP8

18 17

9

e=8, m=10
76 206 76 10

e=4, m=3

e=5 m=2

20



Block Floating Point (BFP)

6 5 0 32
L

0
I JE
3 0430 3 0 7 0

wserrz ) ]

g=2, e=4, m=4 g=4, e=4, m=6 g=16, e=8, m=3

ESign field [JExponent (e) [JMantissa (m)

e BFP formats offer a middle ground between FP and INT formats, by enforcing that a group of
values share a common exponent while maintaining individual mantissas.
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Block-Floating Arithmetics (BFP)

O/ 11010 O] 11 |00 0| 010

= = [N

O|01] MM O] 11 |00 0| 001

e Inner-group operations are performed using fixed-point arithmetic.
e Cross-group operations are performed using floating-point arithmetic.
e Each group exponent also includes a bias, which is shared across all the groups.

r=(—1)° x 26799 «m  where 1 <m < 2
m = (bo.b1b2bs...b22)2
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Example

Find the
5.5 Find the Group Converting to (-1)
2.625 max value exponential (1.375x2%) Binary (-1)0x21
-3.125 | | ) 2 I % (_1)1,(21
2.75 (-1)°x21
0[10110 BFP (-1)°x22x(1 .0110),
001010 ¢ RepresentationI (_1)0><22><(0_1010)2
10 | AGmo0 (-1)!x22%(0.1100),
O[010M (_1)0)(22)((0.1011)2

NYU SAI LAB

0x22x(1.0110),
1.0101),
1.1001),
1.0110),

significands



Logarithm Arithmetics

e Only quantize the floating-point number to the nearest power-of-two
values.
e Hardware multiplication is cheaper for power-of-two values.

e A total of 8 numbers, 3 bits are
| | | | | needed to encode the bits.
-8 -4 -2 -1 1 2 4 8
| §E1 10 [Fo1 Heo Boo Bo1 P10 811
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Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives:
Weight quantization, activation quantization

Quantization aware training, post training quantization

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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Weight Quantization

Frequency

10"

10" 4 | |l

04 [-03' -0.2

Weights Value

Weight distribution in ResNet

NYU SAI LAB

0.4

The weight distribution follows a
gaussian-like distribution.

The outlier will lead to large quantization
error.

A good selection on the clip range L is
critical for accuracy performance.

27



Weight Quantization

10° 1
g 2
g g
b & 10°
ol |l L 1Ly
Q.1 01| 0. ; : 04 -03 -02 -0.1 01 02 03 04
Weights Value Weights Value
e Large truncation error e Small truncation error
e Low quantization error for small values e Large quantization error for small values

NYU SAI LAB

L = 0.9xmax(|W[), L = 0.95xmax(|W|)
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Activation Quantization

e Quantization on activation needs to be performed dynamically. This will introduce

additional compute overhead.
e Also the activation will pass the nonlinear functions, requantization is required to

convert the quantized number.

___|FP2] | INT | |INT2| | Batch | | Rel Ul FP2 | | INT
INT Conv FP Norm INT Conv
\ J
Y
Layer |
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Activation Quantization

(577x1024)x o1 0078 ‘.

0.052 <«
(1024 x1024) I 25%
Projection Layer: O =

Inlet: 577x1024 MatMul WOSC: Cal_scale
Weight: 4096x1024 On 4090 GPU I Dequantize mm Quant (Scale+Quantize+Pack)

e For low-precision quantization, the quantization process may cause more computation
than the computational savings achieved by using low-precision quantization.

NYU SAI LAB o




Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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When to Quantize?

Post-training quantization (PTQ) Quantization-aware Training (QAT)
( I A e I N
Train with full Quantize the
. precision | L weight
I [
[ Quantize the ([ Trainthe
. weights | Quantized model]

! !

e PTQ has lower computational cost, but accuracy is also lower.
e For the model which is expensive to train (LLM), PTQ is applied to facilitate their
implementations.

NYU SAI LAB i




Another Way to Look at Quantization

W

\
/

Original flow

®)—

Flow with quantization

a

-

Y = WA, Z = ReLU(Y)
8L 0L 8Z dY

oW  8Z oY oW

NYU SAI LAB

W’

A

N\
/

%)=

-

oL 0L dZ Y oW’

OW  0Z Y W' OW

How to compute

ow'’ 2
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Straight Through Estimator (STE)

NYU SAI LAB

2

1

0

g
(357

Sign(x)

0
[

6Sigﬁ(x)

-1

ox

0
(a)

1

2

Staircase function has a derivative of 0 at most of the
values. This will makes the DNN not trainable.

We instead use STE to estimate the gradient of a
non-differentiable quantized function in the backward
pass.

oW’

=1
ow

During the forward pass, apply quantization,
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems

30 (2017).
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Another Way to Look at Quantization

Forward pass

wHOHw

NYU SAI LAB

— (oLl

Backward pass

N

-—

B

-




Other Ways to Approximate Quantization

NYU SAI LAB

Sign(x) Clip(—1,x,1) ApproxSign(x) 3-order-ApproxSign(x)

| — LA LA

0
P aSign(x) dClip(-1,x,1) dApproxSign(x) 03-order-ApproxSign(x)
ox ox ax 0x
-2
-2 -1 0 | 2 -2 -1 0 1 2 -2 -1 0 1 2 2 -1 0 1 2
(a) (b) (c) (d)

Liu, Zechun, et al. "Bi-real net: Binarizing deep network towards real-network performance." International Journal of
Computer Vision 128 (2020): 202-219.
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Pytorch Implementation of Quantization

def forward(self, x): def forward(self, x, b, L):
y = F.convZ2d(self.w, Xx) self.quantized w = Q(self.w, b, L)
return y y = F.conv2d(self.quantized w, Xx)

return y
def Q(w, b, L):
L =0.9 * w.abs () .max ()
w = torch.clip(w, min=-L, max=L)
scale = 2L/ (2**b-2)
wg = (w/scale) .round() * scale

return wqg

NYU SAI LAB i




Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB
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Granularity of Quantization

e The weight can be quantized with different granularity:
o Tensor-based quantization
o Vector-based quantization
o  Group-based quantization
e A higher quantization granularity will lead to a lower quantization error and a

higher hardware implementation cost.

1
Tensor-based Vector-based Group-based
quantization quantization quantization

NYU SAI LAB

39



Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB

40



Quantization During Training

X: input W: weight filters Y: output

e The forward propagation is very similar to the inference operation, where the input X is
multiplied by weight W, generating the output Y.

NYU SAI LAB
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Quantization During Training

Data gradient Weight gradient
Computation Computation
vy | X| W' | = |yx XT | X|VY|=|VYW

X: input W: weight filters Y: output

VX: input gradient ~ VW: weight gradient VY. output gradient

NYU SAI LAB
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Quantization During Training

Quantized Data Gradient

(o

VY |7

Computation

Q(vY)

Quantized Weight Gradient

NYU SAI LAB

vX

o

Computation

VW

Q(VY)
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Taxonomy of Quantization

e Quantization techniques can be classified from different perspectives

Weight quantization, activation quantization

Post training quantization, quantization aware training

Tensor-based quantization, vector-based quantization, group-based quantization
Quantization for inference/training

Deterministic quantization, stochastic quantization

O O O O O

NYU SAI LAB

44



Deterministic and Stochastic Quantization

e To quantize a, conventional linear quantization will make
g(a) = 0. However, this will cause a bias.
' e With stochastic quantization:

_J1 forp=0.2
q(a) = {O for p = 0.8

o
l— ¢
—

0.2

e For quantization during the forward pass of DNN training, the bias will not cause any

problem, due to the existence of bias in BN.
e Stochastic quantization is extremely useful when applying quantization to accelerate DNN

training.

NYU SAI LAB
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Deterministic and Stochastic Quantization

Input Feature

maps

.
-
.
[

NYU SAI LAB

Filters

C o"
R
S ..
*

.
.
-

M filters

[ FP weights

Filters
Input Feature c .- Output Feature
maps I maps
c.’ RL .
S . M.
H Xk [ —_ > BN
|| E
W : F 3 g
M filters

Quantized weights
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Quantization During Training

Quantized Data Gradient

(')os

VY |7

Computation

Q(vY)

Quantized Weight Gradient

NYU SAI LAB

vX

0P
12

=

SQ(.)

WT

Computation

VW

%Q(VY)

SQ(.)

vY
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DNN Gradient Distribution

e DNN gradient is much hard to quantize and very sensitive to quantization error.

NYU SAI LAB

(a) (b)

0 0.001 0002 0003  273° 2725 2-20 o-15 2710 55
Neural gradients Log (neural gradients)

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint
arXiv:2006.08173 (2020).
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Learnable Quantization

e Multiple methods have been proposed to learn the quantization
hyperparameters:
o PACT

o QIL
o Quantization network
O

LQ-Net
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Learnable Quantization

e How to convert a number to INT8 representation?

O O O O

NYU SAI LAB

Set the clipping range: (-L, L), bitwidth: b
Compute the scale: s = (Lmee — Limin)/(2° — 1)
Clip the input x: z. = Clip(z, L1in, Limaz)
Calculate the fixed-point representation:

Tint = round((z. — Lmin)/$)

Rescale: z, = szint + Limin

51



Learnable Quantization

e How to convert a number to INT8 representation?
o Set the clipping range: (-, 1), bitwidth: b
o Compute the scale: s = (Imax - Imin)/(2°-1)
o Clip the input x: Xc = Clip(x, Imax, Imin)
o Calculate the fixed-point representation:
Xint = round((Xc-lmin)/s)
o Rescale: Xq = sXint+ Imin

S
L]

Frequency

S

10" | 1l
04 [-03' -0.2

0. 102 03 |04
Weighz:Valos | = 0.9xmax(|W|), | = 0.95xmax(|W|)
Weight distribution in ResNet Can learn by learnt during training?

NYU SAI LAB o




Learnable Quantization

Frequency

10° I

04 [-03' -0.2

Weights Value

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085
(2018).

First we need to apply CLIP function to
the input x, where the clip function has a

range of (-, I).

ls ifex > 1
z. = Clip(x,l) = {w, —I<z<l
—Il, =<l
T
T, =round(—) X s

S
dL  dL dzq dx. _ dL dz.
dl ~ dx, dx. dl ~ dz, d

Can we learn 1?
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Learnable Quantization

NYU SAI LAB

dL _ dL dW' dW,

dl T dw dw, di

—’@:z




Learnable Quantization

Frequency

10"

]0[) 1

0.4 |-0.

NYU SAI LAB

9 ]

Weights Value

L,

Clip(z,l) = {a:
dClip(z,l)
dx B
dClip(z,1)
dl B

ife >1
, =I<z<l
—Il, =<l
(0, ifz>1
1, —-I<x<
0, =<1
(1, ifz>1 L can be
10, —I<z<1! |egmable
-1, z<1

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint

arXiv:1805.06085 (2018).
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Learnable Quantization

RPN s | d s d d - d dy.
%, |w| <—A><—A> [w] <—W><—W> [w] 4—W><—W>
A A A
1 1 1
1/qa 1/qw 1/qw -
s 17

th} th§

(a) No Quantization (b) T=1 (c) T=11 (d) T=121 (e) Complete Quantization

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings

NYU S AI L AB of the IEEE/CVF conference on computer vision and pattern recognition. 2019. e

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2019.



Quantization Interval Learning (QIL)

c-L c+L
10* 10°
5 5
g g
& 10 £ 10
10" | 0 | IIIJ L nl{ 1
04 [-03" ; . : 3 |04 04 403 -02 -01 0] 01 02 03 04
Weights Value Weights Value
|f\//_\4—\1
0 0.5 1

w=0.2
Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
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Quantization Interval Learning (QIL)

e To achieve this rounding flexibility, we combine a
learnable function with quantization.

wq = Q(F(w))

wg = Q(w)

NYU SAI LAB

e [(.)is a function which contains learnable
hyperparameters.

0 lw| < ew — dw
w = sign(w) w| > ew + dw
(aw|w| + Bw)? - sign(w) otherwise,

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
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Quantization Interval Learning (QIL)

e QIL offers flexibility to round the FP weights.

0.5 1 T T L :
1 B oE 1 Mapping
w=0.2 1 !
w=0.2 v=0.8
0 |'w| < cw —dw %
w = sign(w) |lw| > ew + dw _
(aw|w|+ Bw)” - sign(w) otherwise, d 0' 5 0/—\ ‘ll Quantize
Mapping function contains some learnable parameters ,;,:T 0.8

e wq = Q(F(w)) are stored for inference after the training process finished.
e We can not apply this techniques over the activation, due to its large computational overhead.

NYU SAI LAB Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 59

of the IEEE/CVF conference on computer vision and pattern recognition. 2019.




e \/ can be learnable.

e, e The resultant quantization can still facilitate
1 ] [b] MAC computation.
_ 2 b T O
ak) = < N il > Qours(W, v*) " Qours(a, v*) = ) ) " v}'v} (b}’ © bf)
oK —1 bi i=1 j=1

e v."v@can be computed at low cost.
. . w Ja
Q(x) =v'e_,e isa binary vector @ b"b?can be pre-computed.

v AR BE R

v*, B* = arg min ||BTV - x|
v,B

NYU SAI LAB Zhang, Donggqing, et al. "Lg-nets: Learned quantization for highly accurate and compact deep neural networks."
Proceedings of the European conference on computer vision (ECCV). 2018.
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Quantization Networks

e We propose a novel perspective of interpreting and implementing neural network quantization by
formulating low-bit quantization as a differentiable non-linear function.

(a) No Quantization (b) T=1 (c) T=11 (d) T=121 (e) Complete Quantization

n

y = af
i=1

Alz)=

NYU SAI LAB

siA(Bx — b;) — o)

e n + 1isthe number of quantization intervals
e [3is the scale factor of inputs

1 >0, e siand bi are the scales and biases for the unit step functions

0 @1
Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019. 61

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." Proceedings of the
IEEE/CVF international conference on computer vision. 2019.



Quantization Networks

a : 1
A(z) = { : , = 0; o(T%) = 1+ exp(—Tx)

e We can replace the staircase
function with a sigmoid function.

(T11 I Y ———— e \We can progressively increases T
T #0 %i/ during the training process.
/

62
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Presentation

Trained ternary quantization

Incremental network quantization: Towards lossless cnns with low-precision weights
Quantization and training of neural networks for efficient integer-arithmetic-only inference
Smoothquant: Accurate and efficient post-training quantization for large language models

NYU SAI LAB
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Post Training Quantization

e Several Methods have been proposed to efficient post-training
quantization.

e Given the large size of the modern LLM, it is beneficial to applied the
quantization on the model directly without the need of finetuning.

NYU SAI LAB
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Model Architecture: Llava
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If there are factual errors in the questions, point it out;
if not, proceed answering the question.
What's happening in the desert?
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Sorry, I cannot answer that question as there is no
context about which desert you are referring to.

In the image, there is a city skyline with buildings and
a beach with people enjoying the sunset. The scene is
set in a desert, which is unusual for a beach setting.

There are no deserts in the image. The image features
a beach with palm trees, a city skyline, and a large
body of water.

NYU 8 AI L AB Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2024).




CLIP Architecture
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on machine learning. PMLR, 2021.
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference
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Types of Outlier

e Massive Activation:
o For an activation matrix A, an massive activation is an element Aij within it
that satisfies:
o Aij>nXmean(|A|) y6-Layer3
o Aij>y
o n=300, y=50
e Channelwise Outlier:
o mean(Ai) > nXstd(A) +mean(|A|)
o std(Ai)<p
o n=3, p=0.6

NYU SAI LAB




Outlier Study: CLIP
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Outlier Study: CLIP

Layer 1

e 3D plots of X2 across

layers.
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e X2 exhibits channel wise

outlier
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Outlier Study: CLIP

Layer 1 Layer 2 Layer 3 Layer 4
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e 3D plots of x8 across
layers.
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Outlier Study: CLIP Weights

g-weight Layerl

e Wjgq across CLIP layers.
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Outlier Study: CLIP Weights

e Wk across CLIP layers.
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Outlier Study: CLIP Weights
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Outlier Study: LLaMA Activations

NYU SAI LAB

LLaMA2-13B

Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024).
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Study the

Attention Q

Reason of LLM Outliers

Layer 0 Weights

Attention K Attention V Attention O

e \We going to study the
fundamental reason of the
existence of LLM outliers.
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Outlier Smoothing

7

@ Outlier | ® Post-training |
Smoothing || termediate Quantization
LLM 8.5 3 [0.2] 1 9 (3o 1 Output

LLM[:> J—)J \—> 2 l.2:4.6 - g : l: == LLM
k M w ) L|a.1|—1 io.a|1.4| [s |—1.| 1)1 t

e \When performing post-training quantization on a LLM, it's common to include a
step of outlier smoothing prior to the quantization process.
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SmoothQuant

quant. levels
=

NYU SAI LAB

outlier | X I - | w |

low effective bits

(WY
hard to quantize y very easy to quantize
(a) Original

. migrate difficulty .
smoothed S oy |W|

quant. levels
5
#

easy to quantize easy to quantize

(b) SmoothQuant

Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models."
International Conference on Machine Learning. PMLR, 2023.

The intermediate results within LLM usually
have a lot of outliers.

SmoothQuant smooths the activation outliers
by offline migrating the quantization difficulty
from activations to weights with a
mathematically equivalent transformation.

~ ~

Y = (Xdiag(s)™!) - (diag(s) W) = XW

s depends on the square root of the magnitude
of the largest channel
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SmoothQuant

Original: i SmoothQuant:
Abs M ]
7 1 2 2 X=Xdiag®)" 5777, OPT-175B LAMBADA HellaSwag PIQA WinoGrande
PEIETR L - EARAN FP16 74.7% 593% 797%  712.6%
=t |2l Tl 3
212 2 . —=——=——" 2|-1|-2 WS8AS 0.0% 25.6% 534%  50.3%
Al i gl s 3]sl ZeroQuant 0.0%* 260% 517%  49.3%
R P e — 5 4 EHES8) 74.7% 592% 719.7%  12.1%
= S LLM_ int _
v I P oy Outlier Suppression ~ 0.00%  25.8% 52.5%  48.6%

SmoothQuant-O1 74.7% 59.2% 79.7% 71.2%
: e : il SivicothQurt-02 75.0% 590% 792%  71.2%
Y = (Xdiag(s) ") - (diag(s)W) = XW SmoothQuant-03 74.6% 589% 797%  712%

s; = max(|X;|)*/ max(|W;[)' @
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Channe/ 2048 O

e QuaRot introduces a novel methods to convert the weights and activation of LLM.
e After conversion, most of the outliers within the activation and weights are removed.
e This conversion introduces almost no additional cost during the inference.

NYU SAIl LAB| Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated lims." arXiv preprint arXiv:2404.00456 (2024).
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QuaRot

e Assume Y =AW, where A may have outliers, quantizing Aand W as Q(A) and

Q(W) could result in increased quantization error. Consequently, Q(A)Q(W) may
differ significantly from AW.

e With QuaRot, a orthogonal matrix is applied to eliminate the outliers within A.

A— W —AW AR— R™W — AW

R'R=RR'=|

Q(A) —Q(W) — Q(A)Q(W) Q(AR) — Q(R™W) — Q(AR)Q(R™W)

e R™W can be computed offline, AR can be generated by modifying the weight
matrices of the last layer.

NYU SAI LAB Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024). 82
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e For some of the layers, the conversion needs to be performed online
e \We can use Hadamard matrix, which consists of only 1 and -1 to facilitate the
matrix multiplications.

NYU SAI LAB

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated lims." arXiv preprint arXiv:2404.00456 (2024).
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SpinQuant
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ks
o rotations

argmin Lo (R, Ry | W, X) e SpinQuant optimizes (or learns) the rotation matrices to
ReM obtain the minimal changes on the training loss.
e We have to ensure the rotational matrix still satisfies the
orthogonal property — Cayley Optimization.

NYU SAI LAB Liu, Zechun, et al. "SpinQuant--LLM quantization with learned rotations." arXiv preprint arXiv:2405.16406 (2024). 84




