
Lecture 05: 
DNN Quantization



2

Recap
● Why pruning?

○ Running cost of CNNs and Transformers
● Sparse matrix encoding
● General pruning techniques
● Transformer pruning
● Large model pruning



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



5

Fixed-Point Arithmetic (INT)

● Hyperparameter associated with the fixed-point format:
○ Clipping range (-L, L): usually symmetrical around 0
○ Bitwidth (b)

● Quantization with Fixed-point format is called Fixed point quantization or 
INT quantization.

3
4-bit Fixed 

Point (INT4)

2 0
Fixed Point Formats

e=0, m=3

7 6 0

e=0, m=7

8-bit Fixed 
Point (INT8)



6

Fixed-Point Format (Symmetrical)
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

 ● Have a uniform representation power within the clipping range.
● All the computations can be performed using 

0 L-L 0 L-L



7

Example
● X = [1.1, 2.4, -0.3, 0.8],  bitwidth = 3, L = 2

● How to convert a number x to INT representation?
○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

s = 4/6 = 2/3  
Xc = [1.1, 2, -0.3, 0.8]

Xint = [2, 3, 0, 1]
Xq = [1.33, 2.0, 0.0, 0.67]

b=3, L=2  



8

Computation with Fixed-Point Format
● Addition/Subtraction: 
● Multiplication:
● Division: If the scales are the same



9

Computation with Fixed-Point Format
● If we try to compute the matrix multiplication between X and Y:

All elements within the tensors are quantized using the 
same scale✖Xq,1 Xq,2

yq,2

yq,1



10

INT Quantization with Low Precision

0 1-11-1 Binary neural network Ternary neural network

● Binary and Ternary neural networks are both multiplication-free DNN.



11

Fixed Point Format (Unsymmetrical)
● How to convert a number to INT8 representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1



12

Example
● X = [1.1, 2.4, -0.3, 0.8],  bitwidth = 3, L = 2

s = 0.357  
b=3, Lmax=2, Lmin=-0.5   

● How to convert a number to INT8 representation?
○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1
Xc = [1.1, 2, -0.3, 0.8]

Xint = [4,7,1,4]
Xq = [0.93, 2.0, -0.14, 0.93]



13

Computation with Fixed-Point Format
● Addition/Subtraction: hard to implement 
● Multiplication (needs additional computation):

● Division: hard to implement



14

Floating-Point Arithmetic

31
IEEE 754 

32-bit (FP32)

30 22 0 15 14 9 0

e=5, m=10e=8, m=23

IEEE 754 
16-bit (FP16)

Sign field Exponent (e) Mantissa (m)

● The floating-point number has three fields:
○ Sign (s)
○ Exponent (e)
○ Mantissa (m)



15

Floating-Point Arithmetic

Overton, Michael L. "Floating point representation." Unpublished note (1996).

● Every real number can be converted in the following format:

● For example:
○ 5.5 = (-1)0 

✕ 2129-127 
✕ (1.011)2 

○ -71 = (-1)1 
✕ 2133-127 

✕ (1.000111)2 
○ 0.34375 = (-1)1 

✕ 2125-127 
✕ (1.011)2 

m There typically exists a predefined 
bias: bias = 127 for IEEE 754 FP32.

s = 0, e = 129, m = 011



16

Floating-Point Arithmetic

● IEEE-754 standard: 

● The exponent field is unsigned.
● We need some special representation:

○ A bit stream of all zeros represents 0

m



17

Floating Point Arithmetic

● Have better representation power for values with small magnitudes.
● How to convert a real number x to FP representation?

x = |x|   s = sign(x)



18

Example

x = -13.24, bias=127 

x = |x|   s = sign(x)

a = 3, e = 130, m = 0.655 

s = (0)2, e = (10000010)2, m = (0.101001111010111000010000)2  



19

Computation with FP Representation
● Addition/Subtraction: 

○ Need to align the exponent
011010 + 001111 = 011010 + 011001 = 011011
s1e1 m1 Alignment

● Multiplication/Subtraction: 
○ Sum the exponent, multiply the mantissa

011010    001111✖

s2 e2 m2

s1e1 m1 s2 e2 m2

e =e1+e2

m =1.m1 x 1.m2

● Addition and subtraction is expensive for FP.



20

Customized FP Representation

bfloat16 TensorFloat

15 14 9 0

15 14 6 0 18 17 9 0

e=8, m=10e=8, m=7

e=5, m=10

IEEE 754 
16-bit (FP16)

HFP8
7 2 0

e=4, m=3

6 7 1 06

e=5, m=2

● Numerous customized FP representations have been developed to 
facilitate DNN execution.



21

Block Floating Point (BFP)
6 5 0

g=4, e=4, m=6

4 3 0
3 0

g=2, e=4, m=4

3 0

● BFP formats offer a middle ground between FP and INT formats, by enforcing that a group of 
values share a common exponent while maintaining individual mantissas.

3 2 0

7 0

g=16, e=8, m=3

MSFP-12

Sign field Exponent (e) Mantissa (m)



22

Block-Floating Arithmetics (BFP)

010 0 11

1110 01 0010 11

0010 11

0010
11

0100

● Inner-group operations are performed using fixed-point arithmetic.
● Cross-group operations are performed using floating-point arithmetic.
● Each group exponent also includes a bias, which is shared across all the groups.

m
m = (b0.b1b2b3...b22)2



23

Example

5.5
2.625
-3.125
2.75

Find the 
max value

5.5

Find the 
Group 

exponential (1.375×22)
2

Converting to 
Binary

(-1)0×22×(1.0110)2 
(-1)0×21×(1.0101)2 
(-1)1×21×(1.1001)2 
(-1)0×21×(1.0110)2 

BFP
Representation

(-1)0×22×(1.0110)2 
(-1)0×22×(0.1010)2 
(-1)1×22×(0.1100)2 
(-1)0×22×(0.1011)2 

10

0
0
1
0

10110
01010
01100
01011

Shift on 
significands



24

Logarithm Arithmetics
● Only quantize the floating-point number to the nearest power-of-two 

values.
● Hardware multiplication is cheaper for power-of-two values.

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7-8

1 2 4 8-1-2-4-8

● A total of 8 numbers, 3 bits are 
needed to encode the bits.

11 10 01 001 1 1 1 11100100 0000



25

Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



26

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives:

○ Weight quantization, activation quantization
○ Quantization aware training, post training quantization
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



27

Weight Quantization

Weight distribution in ResNet

● The weight distribution follows a 
gaussian-like distribution.

● The outlier will lead to large quantization 
error.

● A good selection on the clip range L is 
critical for accuracy performance.

L L

-m m



28

Weight Quantization

● Large truncation error
● Low quantization error for small values

L L L L

-m m

● Small truncation error
● Large quantization error for small values

● L = 0.9×max(|W|), L = 0.95×max(|W|)



29

Activation Quantization
● Quantization on activation needs to be performed dynamically. This will introduce 

additional compute overhead.
● Also the activation will pass the nonlinear functions, requantization is required to 

convert the quantized number.

INT
Conv

FP2
INT

INT2
FP

Batch
Norm

ReLU INT
Conv

FP2
INT …

Layer l



30

Activation Quantization

(577✕1024)✕
(1024✕1024)

MatMul
Dequantize

Cal_scale
Quant (Scale+Quantize+Pack)On 4090 GPU

Projection Layer:
Input: 577x1024

Weight: 4096x1024

● For low-precision quantization, the quantization process may cause more computation 
than the computational savings achieved by using low-precision quantization.



31

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



32

When to Quantize?
Post-training quantization (PTQ)

Train with full 
precision

Quantize the 
weights

Quantization-aware Training (QAT)

● PTQ has lower computational cost, but accuracy is also lower.
● For the model which is expensive to train (LLM), PTQ is applied to facilitate their 

implementations.

Quantize the 
weight

Train the 
Quantized model



33

How to compute           ?

Another Way to Look at Quantization

W

A

✖ Y Z
✖

Q

Original flow Flow with quantization

W’W

A

Y Z
ReLU

ReLU

Y = WA, Z = ReLU(Y)



34

Straight Through Estimator (STE)
● Staircase function has a derivative of 0 at most of the 

values. This will makes the DNN not trainable.
● We instead use STE to estimate the gradient of a 

non-differentiable quantized function in the backward 
pass.

● During the forward pass, apply quantization, 
for backprop, ignore it.

Li, Hao, et al. "Training quantized nets: A deeper understanding." Advances in Neural Information Processing Systems 
30 (2017).



35

Another Way to Look at Quantization

✖

Q

Forward pass

W’W

A
Y ZReLU

Q
✖

W

A
Y ZReLU

Backward pass



36

Other Ways to Approximate Quantization

Liu, Zechun, et al. "Bi-real net: Binarizing deep network towards real-network performance." International Journal of 
Computer Vision 128 (2020): 202-219.



37

Pytorch Implementation of Quantization
    def forward(self, x):

        y = F.conv2d(self.w, x)

        return y

    def forward(self, x, b, L):

        self.quantized_w = Q(self.w, b, L)

y = F.conv2d(self.quantized_w, x)

        return y
def Q(w, b, L):

   L = 0.9 * w.abs().max()

   w = torch.clip(w, min=-L, max=L)

   scale = 2L/(2**b-2)  

   wq = (w/scale).round() * scale

   return wq



38

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



39

Granularity of Quantization
● The weight can be quantized with different granularity:

○ Tensor-based quantization
○ Vector-based quantization
○ Group-based quantization

● A higher quantization granularity will lead to a lower quantization error and a 
higher hardware implementation cost.

Tensor-based 
quantization

Vector-based
quantization

Group-based
quantization



40

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



41

Quantization During Training

● The forward propagation is very similar to the inference operation, where the input X is 
multiplied by weight W, generating the output Y.

X Y=W

X: input W: weight filters Y: output



42

Quantization During Training

  XWT
  Y =

X: input W: weight filters Y: output
X: input gradient W: weight gradient Y: output gradient

XT =  Y    W

Weight gradient 
Computation

Data gradient 
Computation



43

Quantization During Training

  X

WT

  Y XT    W

Quantized Weight Gradient 
Computation

 Quantized Data Gradient 
Computation

Q
(.)

Q(   Y)

Q(WT)

Q(.)

Q
(.)

Q(XT)

Q(.)

  Y

Q(   Y)



44

Taxonomy of Quantization
● Quantization techniques can be classified from different perspectives

○ Weight quantization, activation quantization
○ Post training quantization, quantization aware training
○ Tensor-based quantization, vector-based quantization, group-based quantization
○ Quantization for inference/training
○ Deterministic quantization, stochastic quantization



45

Deterministic and Stochastic Quantization

10

a = 0.2

● To quantize a, conventional linear quantization will make 
q(a) = 0. However, this will cause a bias. 

● With stochastic quantization:

● For quantization during the forward pass of DNN training, the bias will not cause any 
problem, due to the existence of bias in BN.

● Stochastic quantization is extremely useful when applying quantization to accelerate DNN 
training. 



46

Deterministic and Stochastic Quantization

...

...

Filters

H

W

C

Input Feature 
maps

...
...

...
R

S

C

M filters

* ...

...

Filters

H

W

C

Input Feature 
maps

...
...

...

R
S

C

M filters

*

...

Output Feature 
maps

E

F

M

BN

β

FP weights Quantized weights



47

Quantization During Training

  X

WT

  Y XT    W

Quantized Weight Gradient 
Computation

 Quantized Data Gradient 
Computation

S
Q

(.)

Q(   Y)

Q(WT)

SQ(.)

Q(XT)

  Y

Q(   Y)

S
Q

(.)

SQ(.)



48

DNN Gradient Distribution

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint 
arXiv:2006.08173 (2020).

● DNN gradient is much hard to quantize and very sensitive to quantization error.



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



50

Learnable Quantization
● Multiple methods have been proposed to learn the quantization 

hyperparameters:
○ PACT
○ QIL
○ Quantization network
○ LQ-Net



51

Learnable Quantization
● How to convert a number to INT8 representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

1



52

Learnable Quantization

Weight distribution in ResNet
l = 0.9×max(|W|), l = 0.95×max(|W|)

L L

-m m

● How to convert a number to INT8 representation?
○ Set the clipping range: (-l, l), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the fixed-point representation:

○ Rescale:

Can learn by learnt during training?

s = (lmax - lmin)/(2b-1)
xc = Clip(x, lmax, lmin)

xint = round((xc-lmin)/s)
xq = sxint+ lmin



53

Learnable Quantization

L L

-m m

● First we need to apply CLIP function to 
the input x, where the clip function has a 
range of (-l, l).

●

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 
(2018).

● Can we learn l?



54

Learnable Quantization

✖

Q W’W

A

Y ZReLU

l

clipW

l

Wc r(.) W’



55

Learnable Quantization

L L

-m m

Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint 
arXiv:1805.06085 (2018).

L can be 
learnable



56

Learnable Quantization

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

QIL

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

QN



57

 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

L L

-m m

c-L c+L

-m m

0

w = 0.2

……
0.5 1



58

 Quantization Interval Learning (QIL) 

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

0.50

w = 0.2

1

……
wq = Q(w)

● F(.) is a function which contains learnable 
hyperparameters.

● To achieve this rounding flexibility, we combine a 
learnable function with quantization.

wq = Q(F(w)) 



59

 Quantization Interval Learning (QIL) 
● QIL offers flexibility to round the FP weights.

0

w = 0.2

……

0

w = 0.2

……

 = 0.8

0

……

 = 0.8

Quantize

Mapping

Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

● wq = Q(F(w)) are stored for inference after the training process finished. 
● We can not apply this techniques over the activation, due to its large computational overhead.

Mapping function contains some learnable parameters

0.5 1

0.5 1

0.5 1



60

LQ-Nets

Zhang, Dongqing, et al. "Lq-nets: Learned quantization for highly accurate and compact deep neural networks." 
Proceedings of the European conference on computer vision (ECCV). 2018.

Q(x) = vTex ,ex is a binary vector

v ex

q(x)

● V can be learnable.
● The resultant quantization can still facilitate 

MAC computation.

● vi
wvj

a can be computed at low cost.
● bi

wbj
a can be pre-computed.



61

Quantization Networks
● We propose a novel perspective of interpreting and implementing neural network quantization by 

formulating low-bit quantization as a differentiable non-linear function.

Yang, Jiwei, et al. "Quantization networks." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019.

● n + 1 is the number of quantization intervals
● β is the scale factor of inputs
● si and bi are the scales and biases for the unit step functions

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." Proceedings of the 
IEEE/CVF international conference on computer vision. 2019.



62

Quantization Networks

● We can replace the staircase 
function with a sigmoid function.

T = 1

T = 3T = 5T =10

T =50
● We can progressively increases T 

during the training process. 



63

Presentation
● Trained ternary quantization
● Incremental network quantization: Towards lossless cnns with low-precision weights
● Quantization and training of neural networks for efficient integer-arithmetic-only inference
● Smoothquant: Accurate and efficient post-training quantization for large language models



Topics
● Basic Data Formats

○ Fixed point (INT)
○ Floating point (FP)
○ Block floating point (BFP)

● Quantization methods
○ Taxonomy of Quantization
○ Learnable adaptive quantization scheme
○ Quantization for LLM



65

Post Training Quantization
● Several Methods have been proposed to efficient post-training 

quantization.

● Given the large size of the modern LLM, it is beneficial to applied the 
quantization on the model directly without the need of finetuning.



66

-m m



67

Model Architecture: Llava

P
rojection
N

etw
ork

✕24

S
elf-A

ttention

Feedforw
ard

N
etw

ork

CLIP

Embedding

Image

Text

Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2024).
S

elf-A
ttention

Feedforw
ard

N
etw

ork

✕40

Fusion

Concat in token dim



68

CLIP Architecture

Self-Attention

Feedforward
Network

✕2
4

C
LI

P

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference 
on machine learning. PMLR, 2021.



69

Types of Outlier
● Massive Activation:

○ For an activation matrix A, an massive activation is an element Aij within it 
that satisfies:

○ Aij > η✕mean(|A|)
○ Aij > γ
○ η=300, γ=50

● Channelwise Outlier:
○ mean(Ai) > η✕std(A) +mean(|A|)
○ std(Ai) < β
○ η=3, β=0.6



70

Outlier Study: CLIP
● 3D activation within layer 12
      MA is produced on y5
       MA is propagated on x1,y1 from layer11

X1   X2   X3   X4   

X5   X8   X9   y1   

y2   y3   y4   y5   



71

Outlier Study: CLIP
● 3D plots of X2 across 

layers.

● x2 exhibits channel wise 
outlier

Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  



72

Outlier Study: CLIP
Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  

● 3D plots of x8 across 
layers.

● x8 exhibits channel wise 
outlier



73

Outlier Study: CLIP Weights

● Wq across CLIP layers.



74

Outlier Study: CLIP Weights

● Wk across CLIP layers.



75

Outlier Study: CLIP Weights

● Wv across CLIP layers.



76

Outlier Study: LLaMA Activations

Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024).



77

Study the Reason of LLM Outliers

● We going to study the 
fundamental reason of the 
existence of LLM outliers.



78

Outlier Smoothing

LLM
Intermediate

LLM

Post-training 
Quantization

Outlier
Smoothing

Output
LLM

21

● When performing post-training quantization on a LLM, it's common to include a 
step of outlier smoothing prior to the quantization process. 



79

SmoothQuant

Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." 
International Conference on Machine Learning. PMLR, 2023.

● The intermediate results within LLM usually 
have a lot of outliers.

● SmoothQuant smooths the activation outliers 
by offline migrating the quantization difficulty 
from activations to weights with a 
mathematically equivalent transformation.

● s depends on the square root of the magnitude 
of the largest channel



80

SmoothQuant



81

QuaRot

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).

● QuaRot introduces a novel methods to convert the weights and activation of LLM.
● After conversion, most of the outliers within the activation and weights are removed.
● This conversion introduces almost no additional cost during the inference.



82

QuaRot
● Assume Y = AW, where A may have outliers, quantizing A and W as Q(A) and 

Q(W) could result in increased quantization error. Consequently, Q(A)Q(W) may 
differ significantly from AW.

● With QuaRot, a orthogonal matrix is applied to eliminate the outliers within A.

WA AW RTW AW

● RTW can be computed offline, AR can be generated by modifying the weight 
matrices of the last layer.

AR

Q(A) Q(A)Q(W) Q(AR)Q(W) Q(RTW) Q(AR)Q(RTW)

RTR=RRT=I

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).



83

QuaRot

● For some of the layers, the conversion needs to be performed online
● We can use Hadamard matrix, which consists of only 1 and -1 to facilitate the 

matrix multiplications.

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).



84

SpinQuant

Liu, Zechun, et al. "SpinQuant--LLM quantization with learned rotations." arXiv preprint arXiv:2405.16406 (2024).

● SpinQuant optimizes (or learns) the rotation matrices to 
obtain the minimal changes on the training loss.

● We have to ensure the rotational matrix still satisfies the 
orthogonal property → Cayley Optimization.


